Hybrid Learning for General Type-2 TSK Fuzzy Logic Systems
نویسندگان
چکیده
This work is focused on creating fuzzy granular classification models based on general type-2 fuzzy logic systems when consequents are represented by interval type-2 TSK linear functions. Due to the complexity of general type-2 TSK fuzzy logic systems, a hybrid learning approach is proposed, where the principle of justifiable granularity is heuristically used to define an amount of uncertainty in the system, which in turn is used to define the parameters in the interval type-2 TSK linear functions via a dual LSE algorithm. Multiple classification benchmark datasets were tested in order to assess the quality of the formed granular models; its performance is also compared against other common classification algorithms. Shown results conclude that classification performance in general is better than results obtained by other techniques, and in general, all achieved results, when averaged, have a better performance rate than compared techniques, demonstrating the stability of the proposed hybrid learning technique.
منابع مشابه
First-order Interval Type-2 TSK Fuzzy Logic Systems Using a Hybrid Learning Algorithm
This article presents a new learning methodology based on a hybrid algorithm for interval type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-2 TSK FLS output is calculated and the consequent parameters are estimated by recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and...
متن کاملSliding mode incremental learning algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy neural networks
Type-2 fuzzy logic systems are an area of growing interest over the last years. The ability to model uncertainties and to perform under noisy conditions in a better way than type-1 fuzzy logic systems increases their applicability. A new stable on-line learning algorithm for interval type-2 Takagi–Sugeno–Kang (TSK) fuzzy neural networks is proposed in this paper. Differently from the other rece...
متن کاملAn optimal design for type-2 fuzzy logic system using hybrid of chaos firefly algorithm and genetic algorithm and its application to sea level prediction
This paper proposes an optimal design for interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy logic system. In this method, the fuzzy c-means clustering algorithm is used to determine structure of fuzzy rule as well as number of rules. A hybrid between chaos firefly algorithm and genetic algorithms (CFGA) is developed, which is used to find the desirable parameters of membership functions and conseq...
متن کاملType-2 TSK Fuzzy Logic System and its Type-1 Counterpart
An interval type-2 TSK fuzzy logic system can be obtained by considering the membership functions of its existed type-1 counterpart as primary membership functions and assigning uncertainty to cluster centers, standard deviation of Gaussian membership functions and consequence parameters. In many cases it has been difficult to determine the spread percentages for these parameters to obtain an o...
متن کاملEfficient Self-Adaptive Learning Algorithm for TSK-Type Compensatory Neural Fuzzy Networks
In this paper, a TSK-type compensatory neural fuzzy network (TCNFN) for classification applications is proposed. The TCNFN model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 3 of the TCNFN model contains adaptive compensatory fuzzy operations, which make fuzzy logic systems more adaptive and effective. Furthermore, a self-adaptive learning algorithm,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 10 شماره
صفحات -
تاریخ انتشار 2017